
Scrape the Web: Take-home cheat sheet

Asheesh Laroia
http://pycon10.asheesh.org/

February 17, 2010

1 Why notes?

These notes serve as a reference companion to the Scrape the Web talk. This is a cheat sheet with higlights of what
you need to remember.

1.1 Code samples! Original slides!

Head to http://pycon10.asheesh.org/.

2 Why scrape the web?

It's the world's largest, public-access remote procedure call system. Who can resist?

3 Dealing with the network

3.1 Retrieving documents

• urllib2.urlopen: Convenient for easy jobs; bundled with Python. Don't bother with cookielib yourself.

• mechanize.Browser: Jump straight to this if you need to set the User-Agent header or deal with cookies.

• robots.txt: Try to respect it. mechanize.handle_robots(False) to disable.

3.2 IP address blocking

• SSH tunnels are your �rst line of defense.

1

4 Coding strategies

• IPython and its %edit: This enhanced interactive Python shell provides a magically convenient %edit
built-in. Iterate on your scraper until you're satis�ed; re-run your scraping after every save.

• Save your HTML to disk: Separate the downloading of a page from its analysis. Preferably, save it to
disk �rst. That way, if your scraper fails, you can recover.

5 Pulling information out of web pages

5.1 �It's text�

If you don't care about the structure of the page, you can just:

• use string comparisons: (�eggplant� in urllib2.urlopen(URL).read().lower())

• use regular expressions: be careful!

� If you must use regular expressions, don't go alone. Use a regular expression GUI like Kodos to interac-
tively play with your regexp.

Some people, when confronted with a problem, think �I know, I'll use regular expressions.� Now they
have two problems. � Jamie Zawinski.

• Really, be careful with regular expressions. and are not identical. But when
machines generate HTML, it might be reasonable.

5.2 �It's HTML�

Web browsers parse web pages. You can, too. Here are some bad ways to do it:

• XML parsers (like xml.dom.minidom): Don't bother. Web pages generally don't validate.

• htmllib: Event-oriented interface for parsing, like SAX for XML. Gone in Python 3.0. Most document trees
aren't long enough to require it, and for those that do, lxml.html should be okay.

• HTMLParser: Bad at handling invalid HTML. Stay away unless you know what you're doing.

And here are reasonable choices for parsing:

• BeautifulSoup: Convenient, and pure Python. But the latest version doesn't work well. It's time to walk,
not run, away from relying on it.

• html5lib: A slow but high-quality parser for the busted web pages of the 21st century.

• lxml.html: Fast, based on a C core, and high-quality. Comes with a convenient cssselect() feature for �nding
elements. My personal favorite.

For poking around in the document outside of Python, absolutely use these tools from your favorite browser.

• View source: A good quick way to sanity-check the page you're looking at.

• Inspect element: Overwhelmingly useful. Use Firebug for Firefox, or another browser's built-in DOM
inspector, to see a visual representation of the parsed document. Generally fast, easy, and painless.

2

5.3 �It's XHTML�

It's actually nearly never XHTML. See 3.2. Even when it is XHTML, the above tools will work �ne.

6 Forms

6.1 Two HTTP methods: GET and POST

<FORM> tags in HTML let browsers submit data. You can �nd the URL to submit to by checking the <FORM
ACTION> attribute. There are two kinds:

• GET: The default, this uses a query string (?a=b) to store arguments. These are supposed to be bookmarkable
and idempotent.

• POST: These are (supposed to be) used for server requests that modify something about the world, like
submitting a purchase.

The name attribute of the INPUT element drives the form keys.

6.2 Filling out and sending forms

• urllib2: To GET, add '?' + urllib.urlencode({'name': 'value'}). To POST, use urllib2.Request.

• mechanize: The easiest way is to �nd the form on a page and select_form() it.

7 Tricks to keep up your sleeve

7.1 Getting around IP address limits

Fundamentally, you can't. But if you have more IP addresses to use, add an SSH tunnel + tsocks or socks_monkey.
Try Tor or Coral CDN if you want to ride on top of others' addresses, but play nice.

7.2 Solving �Human detection� images (CAPTCHAs)

• Many CAPTCHAs are extremely simple, asking the user to label one of a handful of images. You can label
them in advance.

• In a pinch, show them to a human!

• JDownloader has a few CAPTCHA solvers built-in. In a pinch, look at those or try Jython.

7.3 Executing JavaScript

• If it's easy, just rewrite the JavaScript in Python.

• If it's not, try SpiderMonkey for a good time.

• If that's not enough...

3

7.4 Mechanizing a full web browser

These tools are particularly helpful for �rich� web applications that rely heavily on JavaScript.

• Selenium Remote Control: Through Python, remotely command Firefox, Safari, Internet Explorer, and
other browsers. I have had a fun time with this! Try the Selenium Recorder to automatically generate Python
code to execute various actions.

• Windmill: Pure Python version of the above. I have less experience with it, but it looks powerful.

If you are scraping a simple website that lies behind a JavaScript-heavy CAPTCHA (e.g., reCAPTCHA), you might
try loading up a full web browser, asking a human to solve the CAPTCHA, and then transferring the cookies over
to a Python mechanize bot that does the real work.

7.5 Automatically reverse-engineer website templates

It'd be nice if the computer could simply learn the template the website uses. In some cases, it can.

• templatemaker: Adrian Holovaty's old Python tool for guessing a decent scraping function given a few
examples of a web page.

• everyblock templatemaker: everyblock.com uses a new, undocumented version of templatemaker. Dig
through their source code dump to �nd it.

8 How Python-based scrapers can be detected

Your Python code probably doesn't emulate a web browser very well. For example, your Python code:

• may send di�erent HTTP headers than a web browser (particularly User-Agent, but also Accept: and others)

• probably doesn't download tracking images or execute JavaScript

• probably doesn't have a human moving a mouse over DOM elements

• might GET /robots.txt

• and so forth.

The remote web server can probably �ngerprint you. Few do, though.

9 Why bother?

Does this seem like a lot of work?

Just remember: the web site is the API.

4

