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Remote procedure call

I Every time you press a key, you cause the remote computer to
execute code.

I Every keypress causes a remote procedure call.

I If you understand this, you can document it as an API.



Remote procedure call

I Every time you press a key, you cause the remote computer to
execute code.

I Every keypress causes a remote procedure call.

I If you understand this, you can document it as an API.



Remote procedure call

I Every time you press a key, you cause the remote computer to
execute code.

I Every keypress causes a remote procedure call.

I If you understand this, you can document it as an API.



Remote procedure call

I Every time you press a key, you cause the remote computer to
execute code.

I Every keypress causes a remote procedure call.

I If you understand this, you can document it as an API.



Power

I We get to interact with the raw data.

I We could write our own interface.

I We get to programmatically interact with a system that only
expect humans at the door.



Power

I We get to interact with the raw data.

I We could write our own interface.

I We get to programmatically interact with a system that only
expect humans at the door.



Power

I We get to interact with the raw data.

I We could write our own interface.

I We get to programmatically interact with a system that only
expect humans at the door.



Power

I We get to interact with the raw data.

I We could write our own interface.

I We get to programmatically interact with a system that only
expect humans at the door.



Independence

I Design choices and restrictions fall away.



Independence

I Design choices and restrictions fall away.



Power, too much

I WE CAN SEND SPAM!

I Don’t do that.



Power, too much

I WE CAN SEND SPAM!

I Don’t do that.



Power, too much

I WE CAN SEND SPAM!

I Don’t do that.



Outline

Intro

Programming the web

Stats pop quiz

The web: Round one

The web: HTTP and you

Recap and philosophy

Parser redux

Countermeasures

Automating the web browser

Other tricks

Conclusions



Programming the web



Say



The Web

I It’s the twenty-first century.

I The Web is a massive, mostly-unrestricted remote procedure
call system.
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Delicious



Curry on the web

http://mehfilindian.com/LunchMenuTakeOut.htm
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The easy way

examples/curry/trivial.py

I urllib2.urlopen() gives you a file descriptor

I Now you can read() it... (and you get a big ol’ byte string)

I Test its contents for squash, and you’re done.
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Stats pop quiz
(Stats from the MAMA survey published by Opera
<http://dev.opera.com/articles/view/mama-key-findings/>.)

I Average page size?
I 16.5K

I HTML to XHTML ratio?
I 2:1

I Transitional vs. Strict/Frameset:
I 10:1

I How many in ”Quirks” mode?
I 85%

I What’s more popular? TITLE or BODY?
I TITLE

I What percent validate in general?
I ca. 4.13%

I What percent of web pages that have validation badges
validate?

I ca. 1
2
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Parsing considerations
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(examples/parsing/)
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I An example of invalid XHTML
<http://www.washington.edu/accessit/webdesign/student/unit5/invalidHTML.htm>
(examples/parsing/invalid-xhtml/)

I in Firefox
I In xml.dom.minidom
I in HTMLParser

I If web HTML is not always parseable, we need a different
approach.
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Other ways to get information out of web pages?

I “squash” in page contents.lower()

I re.search(“squash”, page contents, re.IGNORECASE)
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Inspirational quote: JWZ

Some people, when confronted with a problem, think“I
know, I’ll use regular expressions.” Now they have two
problems.
– Jamie Zawinski
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Inspirational quote: Jon Postel

Robustness principle: “Be conservative in what you do, be liberal in
what you accept from others.”
– Jon Postel, Transmission Control Protocol, RFC 793



Inspirational quote: Leonard Richardson

“You didn’t write that awful page. You’re just trying to get some
data out of it. Right now, you don’t really care what HTML is
supposed to look like.“
– Leonard Richardson, author of BeautifulSoup



Back to curry



New goal for curry: Objectify

Map the menu to Python objects

I play with the source in BeautifulSoup

I ...this is a text processing problem, not tag processing.
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class Entree:

I index
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I description

I long winded description
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We’re done!

Right?



Trees of tags



What defines how HTML gets parsed?

Web browsers
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I Or Chrome’s Inspector
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Parsing trees and finding elements



Early history

I 1998: HTML::TokeParser for Perl

I $p->get tag(“title”)

I 1999: W3C XPath standard

I xmlDoc.selectNodes(“//title”)

I 2004: BeautifulSoup for Python, Release 1.0, “So rich and
green”

I soup(“title”)

I 2006: scrAPI for Ruby

I CSS Selectors...
I title
I span.title
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I “cannot correctly represent any HTML 5 tree (for lack of
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containing MathML or SVG”
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I BeautifulSoup API
(examples/tree-builders/beautifulsoup/search.py)
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Interacting with the web



Basic Yahoo! search (hard-coded)

examples/search/yahoo.py



Basic Google! search (hard-coded)

examples/search/google.py
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I Great code, but broken due to ?



Something’s wrong...
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The web: HTTP and you



A network trace of an HTTP conversation



User-Agent, and other headers the client sends



Status codes

I 2xx: Success

I 3xx: Redirection

I 4xx: Error

I 402: Payment Required

I 404 Not Found

I 410 Gone

I 418 I’m a teapot
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What if we settle for approximate emulation?



Re-do of Google search with a cooked user-agent

examples/search/urllib2-user-agent/google as ie.py



Favorite User-Agent headers

I Mozilla/4.0 (compatible; MSIE 5.0; Windows 98;)

I Mozilla/4.0 (compatible; MSIE 5.0; Windows 98;
(compatible;))

I I can’t believe it’s not Googlebot/2.1
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HTTP: State via cookies

I HTTP implements state on top of TCP
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Filling out more forms: POST and GET

(Be sure to pay attention to the clock; minute 90 is when snack
break starts.)



POST: Cepstral Weather demo (by hand)

http://cepstral.com/cgi-bin/demos/weather



Note the URL we POST to

I from FireBug
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Note the data we POST

I from FireBug



Note the data we POST

I from FireBug



Write simple Python that also POSTs

examples/cepstral/just post.py



Pull out the .wav file and play it with mplayer

examples/cepstral/play wav.py



POST: Cepstral weather demo (via mechanize)

examples/cepstral/just post via mechanize.py



Basic Yahoo! search (via mechanize)

examples/search/yahoo mechanize.py

I Great code, but broken due to robots.txt



Basic Yahoo! search (via mechanize)

examples/search/yahoo mechanize.py

I Great code, but broken due to robots.txt



Basic Yahoo! search (via mechanize, handle robots=False)

examples/search/yahoo mechanize norobots.py



Basic Google! search (via mechanize,
handle robots=False, changeuser-agent)

examples/search/google mechanize.py



Cookies



emusic: Log in and verify that we logged in successfully
(with cookielib)(optional)

examples/cookies/emusic login byhand.py



emusic: Log in and verify that we logged in successfully
(with mechanize)

examples/cookies/emusic login mechanize.py



emusic: Check how many downloads we have left (with
mechanize)

examples/cookies/emusic check downloads.py



Now we’re done, right?

Whew.
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Recap and philosophy
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We’ve seen:

I Loading web pages from the network with urllib2

I Parsing web pages (even broken ones)

I Scraping that page into a set of structured Python objects

I HTTP status codes

I Faking the user agent header

I Submitting forms

I Keeping a session with cookies
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Web APIs
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“Sorry”

I Ohloh: “Sorry, it is not currently possible to get the list of
commits through the API.”

I Flickr: No way to get a user avatar via the API.

I API keys are evidence of submission.

I Where is the love?

I Why even play this game?
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Also, it does not execute page-global JavaScript, which is where
HashCash is implemented.
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The website from Hell: US PTO Public PAIR

http://portal.uspto.gov/external/portal/pair



Start with a CAPTCHA



Solve it and move on to...

I document.write()



Solve it and move on to...

I document.write()



The page is invisible.
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Automating the web browser



Selenium Remote Control

examples/seleniumrc/start.py
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Your parser may fail
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Scaling and stability

I Choosing reliable queries from web pages

I Expanding to more IP addresses when necessary using SSH
(and Python 2.6 multiprocessing for a plausible model of how
to rotate SOCKS proxies)

I Tor (and other proxy considerations)

I registrar.py: was seven years stable...
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